Biochemical and cellular characterization of VRX0466617, a novel and selective inhibitor for the checkpoint kinase Chk2.
نویسندگان
چکیده
VRX0466617 is a novel selective small-molecule inhibitor for Chk2 discovered through a protein kinase screening program. In this study, we provide a detailed biochemical and cellular characterization of VRX0466617. We show that VRX0466617 blocks the enzymatic activity of recombinant Chk2, as well as the ionizing radiation (IR)-induced activation of Chk2 from cells pretreated with the compound, at doses between 5 and 10 micromol/L. These doses of VRX0466617 inhibited, to some extent, the phosphorylation of Chk2 Ser(19) and Ser(33-35), but not of Chk2 Thr(68), which is phosphorylated by the upstream ataxia-telangiectasia mutated (ATM) kinase. Interestingly, VRX0466617 induced the phosphorylation of Chk2 Thr(68) even in the absence of DNA damage, arising from the block of its enzymatic activity. VRX0466617 prevented the IR-induced Chk2-dependent degradation of Hdmx, concordant with the in vivo inhibition of Chk2. Analysis of ATM/ATM and Rad3-related substrates Smc1, p53, and Chk1 excluded a cross-inhibition of these kinases. VRX0466617 did not modify the cell cycle phase distribution, although it caused an increase in multinucleated cells. Whereas VRX0466617 attenuated IR-induced apoptosis, in short-term assays it did not affect the cytotoxicity by the anticancer drugs doxorubicin, Taxol, and cisplatin. These results underscore the specificity of VRX0466617 for Chk2, both in vitro and in vivo, and support the use of this compound as a biological probe to study the Chk2-dependent pathways.
منابع مشابه
The Role of chk2 in Response to DNA Damage in Cancer Cells
Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...
متن کاملCellular inhibition of checkpoint kinase 2 (Chk2) and potentiation of camptothecins and radiation by the novel Chk2 inhibitor PV1019 [7-nitro-1H-indole-2-carboxylic acid {4-[1-(guanidinohydrazone)-ethyl]-phenyl}-amide].
Chk2 is a checkpoint kinase involved in the ataxia telangiectasia mutated pathway, which is activated by genomic instability and DNA damage, leading to either cell death (apoptosis) or cell cycle arrest. Chk2 provides an unexplored therapeutic target against cancer cells. We recently reported 4,4'-diacetyldiphenylurea-bis(guanylhydrazone) (NSC 109555) as a novel chemotype Chk2 inhibitor. We hav...
متن کاملCrystal structure of checkpoint kinase 2 in complex with NSC 109555, a potent and selective inhibitor.
Checkpoint kinase 2 (Chk2), a ser/thr kinase involved in the ATM-Chk2 checkpoint pathway, is activated by genomic instability and DNA damage and results in either arrest of the cell cycle to allow DNA repair to occur or apoptosis if the DNA damage is severe. Drugs that specifically target Chk2 could be beneficial when administered in combination with current DNA-damaging agents used in cancer t...
متن کاملTherapeutics, Targets, and Chemical Biology CCT241533 Is a Potent and Selective Inhibitor of CHK2 that Potentiates the Cytotoxicity of PARP Inhibitors
CHK2 is a checkpoint kinase involved in the ATM-mediated response to double-strand DNA breaks. Its potential as a drug target is still unclear, but inhibitors of CHK2 may increase the efficacy of genotoxic cancer therapies in a p53 mutant background by eliminating one of the checkpoints or DNA repair pathways contributing to cellular resistance. We report here the identification and characteriz...
متن کاملCCT241533 is a potent and selective inhibitor of CHK2 that potentiates the cytotoxicity of PARP inhibitors.
CHK2 is a checkpoint kinase involved in the ATM-mediated response to double-strand DNA breaks. Its potential as a drug target is still unclear, but inhibitors of CHK2 may increase the efficacy of genotoxic cancer therapies in a p53 mutant background by eliminating one of the checkpoints or DNA repair pathways contributing to cellular resistance. We report here the identification and characteriz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 6 3 شماره
صفحات -
تاریخ انتشار 2007